
 International Journal of Computer Trends and Technology Volume 72 Issue 1, 104-108, January 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I1P117 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Enhancing Developer Experience by Reducing

Cognitive Load: A Focus on Minimization Strategies

Srividhya Chandrasekaran

Senior Product Manager, Bedford, MA, United States.

Corresponding Author : schandrasekaran@spotify.com

Received: 05 December 2023 Revised: 09 January 2024 Accepted: 25 January 2024 Published: 31 January 2024

Abstract - This paper endeavors to scrutinize methodologies and approaches geared towards ameliorating the developer

experience with a specific emphasis on strategies aimed at curtailing cognitive load. By delving into minimization strategies,

the study seeks to unravel intricacies associated with mental effort reduction in software development tasks. The ultimate

objective is to provide nuanced insights that can positively influence the cognitive dimensions impacting developers, ultimately

enhancing productivity, decision-making, and the overall cognitive ergonomics of software development practices. The

outcomes of this paper contribute substantively to the ongoing discourse surrounding optimization paradigms for developers,

fostering a technologically advanced and cognitively attuned software development milieu.

Keywords - Cognitive load, Platform engineering, Developer experience, Golden paths, Documentation.

1. Introduction
Cognitive load [1] is the amount of information that our

working memory capacity can hold at one time. According

to Sweller J [2], who proposed the Cognitive Load Theory in

the Late 1980s, the best learning occurs when the learning

environment is aligned with human cognitive capacity.

Sweller’s theory emphasizes that our memory can only

handle so much, so we need teaching methods that avoid

overwhelming us with activities that do not help us learn

directly. The cognitive load involved in a task is said to be

the effort or amount of information processing required by a

person to perform this task.

It is within this context that this study endeavors to

address a discernible research gap. While existing literature

elucidates the theoretical foundations of cognitive load and

its implications for learning, an exploration of the practical

application of strategies to mitigate cognitive load in specific

corporate contexts is slightly limited. The goal of this paper

is to bridge this gap by analyzing and proposing effective

instructional methodologies that alleviate cognitive load and,

in turn, foster enhanced learning experiences for software

developers. By examining the interplay between cognitive

load, memory processes, and instructional design, this study

endeavors to contribute valuable insights to the optimization

of learning environments to improve developer experience.

2. A Deep dive into the intricacies of memory

processing
Three main processes characterize how memory works.

They are encoding, storage, retrieval, or recall. Encoding

refers to the process by which information is learned. The

term “Storage” refers to the duration for which information is

retained in memory. Retrieval is the process by which

individuals access the store’s information. While long-term

memory in the human brain is unlimited, working memory is

limited and subject to cognitive load. Humans intuitively

know this, which is why they use a smartphone or a notebook

to write down things that they do not want to forget.

Fig. 1 How memory works and how information is processed

Information loss

Sensory

memory

Working

Memory
Long term

memory
Sensory input Retrieval

Encoding

Attention

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Srividhya Chandrasekaran / IJCTT, 72(1), 104-108, 2024

105

Similarly, there are three types of cognitive load [3].

1. Intrinsic cognitive load - This is the effort associated

with a particular topic—for example, the effort

associated with learning how Java classes are defined.

2. Extraneous cognitive load -This is the way information

and tasks are presented. For example, when a developer

is learning how to deploy a particular service.

3. Germane cognitive load - The work put in to understand

the topic or domain area. For example: How does music

get streamed on Spotify’s app?

3. Cognitive Load in Software Development
Let’s face it. Human working memory is

limited. Researchers in this field have found that learning

anything with multiple components that interact with each

other is more complex than learning a system with minimal

interaction elements. The former requires more cognitive

capacity to process. Every time working memory capacity is

exceeded, learning slows down, and cognitive load increases

[4].

In the realm of software development, an elevation in

cognitive load is directly linked to a decline in developer

experience. Ever-increasing tools and technology choices in

the last few years and changes in working practices such as

DevOps have increased the cognitive load on software

developers.

The below-shown Fig 2 is an image of the tools in the

CNCF (Cloud Native Computing Foundation) landscape.

Fig. 2 CNCF Cloud Native Landscape [5]

There is a direct correlation between the rise in cognitive

load for software developers and the increasing number of

tools and complexity in technological landscapes. As the

number of tools grows, developers are tasked with navigating

and integrating diverse technologies, leading to a higher

cognitive burden in managing and understanding the intricate

relationships between these elements.

According to the book Team Topologies, the authors

propose transforming cognitive load into intrinsic cognitive

load by training and repetition. The idea is to eliminate

unnecessary cognitive load, enabling individuals to maximize

their cognitive capacity for essential, business-relevant

aspects of their tasks. This approach helps people concentrate

on the most critical aspects of their work.

This is where Developer experience or DevEx comes in.

Developer Experience is about creating an environment

where developers can do their best work [6]. This helps them

improve speed and productivity and deliver value to their

customers. In their day-to-day work, developers face points

of friction multiple times. DevEx reduces this friction by

improving productivity and helps with better outcomes by

increasing product quality, thereby reducing attrition. A 2020

McKinsey study found that companies with better work

environments for their developers achieved revenue growth

four to five times greater than that of their competitors.[7]

Srividhya Chandrasekaran / IJCTT, 72(1), 104-108, 2024

106

Fig. 3 Three core dimensions of developer experience [6]

Source: https://dl.acm.org/doi/fullHtml/10.1145/3610285

4. Delving extensively into a facet of the developer experience: Cognitive load

In other words, cognitive load is the effort that a software developer needs to put in to complete a task.

Fig. 4 The 3 core Dimensions of developer experience [8]

Srividhya Chandrasekaran / IJCTT, 72(1), 104-108, 2024

107

Fig. 5 A Standard Day in the Life of a Software Developer

Upon commencing a daily task, a developer is

confronted with the necessity to consult diverse

documentation, strategically deploy breakpoints within the

codebase, and navigate intricate code structures to grasp the

existing context before initiating modifications. For those

newly acquainted with the domain, product, or organizational

intricacies, the ensuing cognitive load tends to surpass that of

their counterparts well-versed in the codebase. This

augmented cognitive demand poses a discernible risk,

potentially culminating in escalated error frequencies,

protracted development durations, and an attenuated overall

yield of work output.

Cognitive load is linked to the psychological well-being

of software developers. Prolonged exposure to high cognitive

load may contribute to stress, burnout, and job dissatisfaction,

highlighting the need for a balanced and supportive work

environment. Studies also recognize that cognitive load is

experienced differently by individual developers. Factors

such as expertise, experience, and cognitive abilities play a

role in shaping how developers perceive and manage

cognitive demands.

5. Recommendations: Ways to improve

developer experience
5.1. Platform Engineering

Platform Engineering Streamlines development projects

by employing a uniform set of tools and frameworks. This

enables developers to work with Internal Developer portals

to carry out repetitive tasks instead of manually overseeing

them to completion. This, in turn, allows developers to focus

on innovation and minimize delays. Platform Engineering’s

automation capability also promotes cross-team collaboration

and reusable components to speed up product delivery.

Applying a product mindset to building platform tools

also helps improve developer experience. What this means is

that business needs and outcomes are prioritized over

timelines and estimates. This helps engineers look at a

product from the customer’s perspective and helps build the

platform as a product right from day one.

5.2. Improved Documentation

README’s, getting started, and ‘How to’ guides and

one place to access these docs for developers reduce

cognitive load and improve the individual developer’s

experience.

5.3. One place for All Tools for Developers to Access

An Internal Developer portal is a self-service

tool/application that provides one place to access all APIs,

Documentation, Software Templates, and other platform

capabilities, including reducing context switching for

engineers, improving software quality, and improving their

flow and focus.

5.4. Standardize using Golden Paths

About 9-10 years ago, [during hack week], eight top

engineers at Spotify gathered their forces and created a

tutorial on the recommended way of using our services; it was

named “The Golden Path” [9]. The Golden Path is the way

Spotify supports an easy and streamlined way of working. It

is an ‘opinionated’ and ‘supported’ path to build something.

6. Conclusion
While it might currently seem impossible to eliminate

cognitive load for software developers, it is definitely

possible to use the above ways to improve an individual

developer’s experience, thereby reducing stress, burnout, and

turnover. The use of technology to facilitate learning has

Troubleshoot

kubernetes

Visit cloud

provider

console

Write unit tests

and debug failures

Respond to

slack messages
Check code for

security issues

Refer to

documentation

 Write code

Srividhya Chandrasekaran / IJCTT, 72(1), 104-108, 2024

108

become a necessity but the ultimate goal must not be to

overwhelm the learner but to help them understand and apply

their learnings in their everyday work. This must be done

with an understanding of the limitations of working memory

and by using strategies that fit the working styles of software

developers with the intent of making their lives easier and

helping them in ways that they learn best.

References
[1] Paul Main, Cognitive Load Theory: A Teacher’s Guide, Structural Learning, 2022. [Online]. Available: https://www.structural-

learning.com/post/cognitive-load-theory-a-teachers-guide

[2] John Sweller, “Cognitive Load Theory and E-Learning,” International Conference on Artificial Intelligence in Education, AIED 2011,

pp. 5-6, 2011. [CrossRef] [Publisher Link]

[3] Paula Kennedy, Whose Cognitive Load is it Anyway?. [Online]. Available: https://platformengineering.org/blog/cognitive-load

[4] De Jong, “Cognitive Load Theory, Educational Research, and Instructional Design: Some Food for Thought,” Instructional Science, vol.

38, no. 2, pp. 105–134, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[5] Cloud Native Landscape. [Online]. Available: https://landscape.cncf.io/?license=open-source

[6] Abi Noda et al., “DevEx: What Actually Drives Productivity: The Developer-Centric Approach to Measuring and Improving

Productivity,” Queue, vol. 21, no. 2, pp. 35-53, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Shivam Srivastava et al., “Developer Velocity: How Software Excellence Fuels Business Performance,” McKinsey & Company, pp. 1-

11, 2020. [Google Scholar] [Publisher Link]

[8] zakirullin, Cognitive Load in Software Development, 2024. [Online]. Available: https://github.com/zakirullin/cognitive-load

[9] Gary Niemen, How We Use Golden Paths to Solve Fragmentation in Our Software Ecosystem, Spotify Engineering, 2020. [Online].

Available: https://engineering.atspotify.com/2020/08/how-we-use-golden-paths-to-solve-fragmentation-in-our-software-ecosystem/

https://www.structural-learning.com/post/cognitive-load-theory-a-teachers-guide
https://www.structural-learning.com/post/cognitive-load-theory-a-teachers-guide
https://doi.org/10.1007/978-3-642-21869-9_3
https://link.springer.com/chapter/10.1007/978-3-642-21869-9_3#citeas
https://doi.org/10.1007/s11251-009-9110-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cognitive+load+theory%2C+educational+research%2C+and+instructional+design%3A+Some+food+for+thought&btnG=
https://link.springer.com/article/10.1007/s11251-009-9110-0#citeas
https://doi.org/10.1145/3595878
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DevEx%3A+What+Actually+Drives+Productivity%3A+The+developer-centric+approach+to+measuring+and+improving+productivity&btnG=
https://queue.acm.org/detail.cfm?id=3595878
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Developer+velocity%3A+how+software+excellence+fuels+business+performance&btnG=
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://github.com/zakirullin/cognitive-load
https://engineering.atspotify.com/2020/08/how-we-use-golden-paths-to-solve-fragmentation-in-our-software-ecosystem/

